Ship Building at St Annes Primary School

5th June 2013

One class session before lunch
One class session after lunch
Each class session will be structured as follows:

1.	Introduction and demo of Liverpool Docks simulation so the children can see what we are aiming to do in the session.				
2.	Ship building components slide show				
3.	Exercise 1 - the naming of the parts: hull (draught, freeboard), keel, bow, stern, paddle wheels, sponson, wheel cover, funnel, superstructure, mast, rudder,				
4.	Demo of Thing Builder software building a side paddle steamer. [Using positive and negative numbers to customise the model: sizing and locating].				
5.	Children using the software to create the model in Exercise 1	$	$	6.	Play time
:---	:---				
7.	Demo adding model to the Liverpool Docks scenario as part of the scenario using narrative sentences to place the ship in a location and have it dock at a berth				
8.	Demo adding model to the Liverpool Docks scenario the the idea of a ship's heading with examples using a map of the the map to help and the Mersey and Dee estuaries. The children can use where they want.				
9.	If time permits: Bring a little bit of algebra to the scene. The paddle steamer can turn corners by travelling in an arc of a circle. For example a semi circle gets the ship going in the opposite direction to its original course. A key question is what is the radius of this arc - how tight a corner can a ship turn? The Builder software calculates the radius R when the rudder is hard order to go over from the ship's length L and speed V like this:				
R = a*L + b*V + c*V*V (* means multiply)					

A particular ship has a certain length and the values of a, b and c can be customised as attributes of the model. The default is $\mathrm{a}=0.33, \mathrm{~b}=0.0$ and $\mathrm{c}=0.0$. These default values mean that the radius of curvature is equal to $1 / 3$ of the length of the ship no matter how fast the ship is going i.e. hand-brake turns !

Tell the children about the meaning of a turning circle and its radius and tell them that currently it is the same as $1 / 3$ of the ship's length. We would then discuss how we might develop a formula that allows us to make R bigger or smaller than the radius and demonstrate its effect by changing the ship's 'a' value. Thus we have R $=\mathrm{a}$ * L

We would then discuss how the ship's speed might affect R and develop the formula to $\mathrm{R}=\mathrm{a} * \mathrm{~L}+\mathrm{B} * \mathrm{~V}$. The children would then try out the formula on their own ships by adjusting the ' a ' and ' b ; attributes.

